Monthly Archives: February 2017

Invariably Variable: The Art of Contouring

Posted on

PART 1: THE INERTIA OF WRONG ASSUMPTIONS

An object at rest tends to stay at rest…
Newton’s First Law

I’ll never forget the reactions of those two physicians, those many years ago. Or, at least I won’t let myself. Not yet at least.

Allow me a moment to retell.

It was about seven years ago and I had just given a talk at a regional meeting in the Midwest. This particular audience was made up of medical dosimetrists and radiation therapists, with a smattering of medical physicists and radiation oncologists. My topic: “Variation in Anatomical Contouring.”

One of my first slides was a clumsy cartoon I had sketched together in PowerPoint. It showed a horse (labelled “treatment planning”) pulling a train of carts, each labelled with a specific technology dependent on the preceding one. And under the horse, representing the road on which the horse and all carts depended, was written one big, bold word: CONTOURING. I found that old cartoon and I’ve reproduced it in Figure 1, below.

Figure 1. My slide (circa ~2010) used to say, essentially, “We can talk about the cart and the horse all we want, but let’s not forget the condition of the road…”

My simple argument was that if you don’t get your anatomy volumes defined correctly – both for targets and critical organs – then everything else downstream suffers. Or, following the horse-and-cart metaphor, inaccurate contours make for a really bumpy ride. All the benefits of the elegant technology of radiation therapy – inverse planning and dose optimization, dose calculation, DVH and other plan metrics, image-guidance, and precision delivery – don’t even matter if your patient anatomy blueprint is wrong in the first place. The anatomy contours are the original “design input” to the personalized medicine that is radiation oncology. Get that wrong, and you’re in trouble.

For the talk, I showed some preliminary data on inter-observer anatomical contours over a range of critical organs. These were controlled experiments where all clinicians were given the same CT images, and the variation I was seeing in some organs was shocking. While there was not much variation for some organs like the brain or lung which are easily seen as clearly defined pixel regions, there was very large variation for many other organs like the parotid, sub-mandibular glands, brainstem, larynx, and even the spinal cord (!)....